
Science and Technology Council

Indian Institute of Technology, Kanpur

An FPGA Implementation of (3, 6)-Regular Low-Density
Parity-Check Code Decoder

Final Report

July 18, 2020

1

Contents

1 Abstract 3

2 Acknowledgements 4

3 Introduction 5

4 Decoding Algorithms: Belief Propagation 7

5 Our current approach 9
5.1 Joint (3,k)-Regular LDPC Code and Decoder/Encoder Design 9
5.2 Architecture . 11

6 Setup 13
6.1 Software Used . 13
6.2 Block Diagram . 14
6.3 Implementation . 15

7 Experiments and Results 16

8 Scope of Future Work 17

9 References 18

10 Team 19
10.1 Project Mentors . 19
10.2 Team Members . 19

2

1 Abstract

Because of their excellent error-correcting performance, low-density parity-check (LDPC) codes
have recently attracted a lot of attention. In this project, we are interested in the practical
LDPC code decoder hardware implementations. The direct fully parallel decoder implemen-
tation usually incurs too high hardware complexity for many real applications, thus partly
parallel decoder design approaches that can achieve appropriate trade-offs between hardware
complexity and decoding throughput are highly desirable. Applying a joint code and decoder
design methodology, we develop a high-speed (3, k)-regular LDPC code partly parallel decoder
architecture based on which we implement a 9216-bit, rate-1/2 (3, 6)-regular LDPC code de-
coder on Xilinx FPGA device. We have only simulated and tested the entire codes using the
testbench files, since we were not able to test it on real hardware due to lockdown constraints.

3

2 Acknowledgements

Our team would like to express their gratitude to Mr. Mudit Agrawal, General Secretary,
Science and Technology Council, Student’s Gymkhana, Project Mentor Mr. Vaibhav Thakkar
and to the Electronics Club giving us invaluable guidance and support in doing this project.

4

3 Introduction

Low-density parity-check (LDPC) codes are a class of linear block codes. The name comes from
the characteristic of their parity-check matrix which contains only a few 1’s in comparison to
the amount of 0’s. Their main advantage is that they provide a performance which is very close
to the capacity for a lot of different channels and linear time complex algorithms for decoding.
Furthermore are they suited for implementations that make heavy use of parallelism. They
have been widely considered as next-generation error-correcting codes for telecommunication
and magnetic storage.

Defined as the null space of a very sparse M×N parity-check matrix H, an LDPC code is
typically represented by a bipartite graph, usually called Tanner graph, in which one set of N
variable nodes corresponds to the set of codeword, another set of M check nodes corresponds to
the set of parity-check constraints and each edge corresponds to a nonzero entry in the parity-
check matrix H. (A bipartite graph is one in which the nodes can be partitioned into two sets,
X and Y, so that the only edges of the graph are between the nodes in X and the nodes in Y.)
An LDPC code is known as (j, k)-regular LDPC code if each variable node has the degree of j
and each check node has the degree of k, or in its parity-check matrix each column and each
row have j and k nonzero entries, respectively. The code rate of a (j, k)-regular LDPC code
is 1-j/k provided that the parity check matrix has full rank. LDPC codes can be effectively
decoded by the iterative belief-propagation (BP) algorithm.

5

For any given LDPC code, due to the randomness of its Tanner graph, it is nearly impos-
sible to directly develop a high-speed partly parallel decoder architecture. To circumvent this
difficulty, we have used a decoder-first code design methodology: instead of trying to conceive
the high-speed partly parallel decoder for any given random LDPC code, use an available high-
speed partly parallel decoder to define a constrained random LDPC code. We may consider
it as an application of the well-known “Think in the reverse direction” methodology. Inspired
by the decoder-first code design methodology, we have used a joint code and decoder design
methodology in [14] for (3, k)-regular LDPC code partly parallel decoder design. By jointly
conceiving the code construction and partly parallel decoder architecture design, we presented
a (3, k)-regular LDPC code partly parallel decoder structure in [14], which not only defines very
good (3, k)-regular LDPC codes but also could potentially achieve high-speed partly parallel
decoding.

Applying the joint code and decoder design methodology, we develop an elaborate (3, k)-
regular LDPC code high-speed partly parallel decoder architecture based on which we imple-
ment a 9216-bit, rate-1/2 (3, 6)-regular LDPC code decoder using Xilinx Virtex FPGA (Field
Programmable Gate Array) device.

6

4 Decoding Algorithms: Belief Propagation

These algorithms are called message passing algorithms, and are iterative algorithms. The
reason for their name is that in each round of the algorithms, messages are passed from variable
nodes to check nodes, and from check nodes back to variable nodes. The messages from variable
nodes to check nodes are computed based on the observed value of the variable node and some
of the messages passed from the neighboring check nodes to that message node. An important
aspect is that the message that is sent from a variable node v to a check node c must NOT
take into account the message sent in the previous round from c to v. The same is true for
messages passed from check nodes to message nodes.

Before the description of Log-BP decoding algorithm, we introduce some definitions as follows.
Let H denote the M×N sparse parity-check matrix of the LDPC code and

H(i,j)

denote the entry of H at the position (i, j). We define the set of bits n that participate in
parity-check m as

N(m) = n : H(m,n) = 1,

and the set of parity-checks m in which bit n participates as

M(n) = m : H(m,n) = 1

We denote the set N(m) with bit n excluded by N(m)\n, and the set M(n) with parity-check
m excluded by M(n)\m.

7

8

5 Our current approach

5.1 Joint (3,k)-Regular LDPC Code and Decoder/Encoder Design

We first explicitly construct a high-girth (2,k)-regular LDPC code that exactly fits to a high-
speed partly parallel (2,k) - regular LDPC decoder, then extend this decoder to a (3,k)-regular
LDPC decoder that is configured by a set of constrained random parameters and defines a
(3,k)-regular LDPC code ensemble. Each code in such code ensemble is essentially constructed
by randomly inserting certain check nodes into the deterministic high-girth (3,k)-regular LDPC
code under the constraint specified by the decoder. Thus it is reasonable to expect that the
codes in this ensemble most likely don’t contain too many short cycles and the selected code is
prone to assume good performance.

1. Explicitly construct two matrices H1 and H2 in such a way that

Ĥ = [HT
1 , H

T
2]T

defines a (2, k)-regular LDPC code C2 whose Tanner graph has the girth of 12.

2. Develop a partly parallel decoder that is configured by a set of constrained random param-
eters and defines a (3, k)-regular LDPC code ensemble, in which each code is a subcode
of C2 and has the parity-check matrix

H = [ĤT , HT
3]T

9

.

3. Select a good (3, k)-regular LDPC code from the code ensemble based on the criteria of
large Tanner graph average cycle length and computer simulations. Typically the parity-
check matrix of the selected code has only few redundant checks, so we may assume that
the code rate is always 1-3/k.

10

5.2 Architecture

1. Memory Banks: Each PE block PEx,y contains five RAM blocks: EXT-RAM-i for i =
1, 2, 3, INT-RAM, and DEC-RAM. Each EXT-RAM-i has L memory locations and the
location with the address d-1 (1 ≥ d ≥ L) contains the extrinsic messages exchanged
between the variable node vx,y

d in VGx,y and its neighboring check node in CGi. The
INT-RAM and DEC-RAM store the intrinsic message and hard decision associated with
node vx,y

d at the memory location with the address d-1 (1 ≥ d ≥ L).

2. Address Generator: One address generator AG(i)
x,y associates with one EXT-RAM-i in

each PEx,y. In the check node processing, AG(i)
x,y generates the address for reading

hybrid data and, due to the five-stage pipelining of datapath loop, the address for writing
back the check-to-variable message is obtained via delaying the read address by five clock
cycles.

3. Shuffle Network: A bi-directional shuffle network πi is implemented to realize the parity-
check matrix H with the address generators AG(i)

x,y.

11

4. CNU: Each CNU carries out the operations of one check node, including the parity check
and computation of check-to-variable extrinsic messages.

5. VNU: Each VNU generates the hard decision and all the variable-to-check extrinsic mes-
sages associated with one variable node.

12

6 Setup

6.1 Software Used

We have mainly used Verilog, which is a hardware description language(HDL) used to model
electronic systems. It is most commonly used in the design and verification of digital circuits at
the register-transfer level of abstraction. HDL simulators are software packages that simulate
expressions written in one of the hardware description languages, such as VHDL, Verilog or
SystemVerilog. We have also used python to write few codes. For compilation and simulation,
we have used Xilinx. For creating noise in the input image, we have used python libraries and
opencv.

13

6.2 Block Diagram

14

6.3 Implementation

We have used a greyscale image as our input and have done image processing on it so as to add
the noise. The image is then filtered by using the LDPC code so as to give the original image
as the final output.

• We implemented a (3, 6)-regular LDPC code partly parallel decoder for L = 256 using
Xilinx Virtex-E XCV2600E device with the package FG1156. The corresponding LDPC
code length is N = L · k2 = 256 · 62 = 9216 and the corresponding code rate is 1/2.
We obtain the constrained random parameter set for implementing π3 and each AG(3)

x,y

as follows: first generate a large number of parameter sets from which we find few sets
leading to relatively high Tanner graph average cycle length, then we select one set leading
to the best performance based on computer simulations.

• This partly parallel decoder works simultaneously on three consecutive code frames in
two-stage pipelining mode: while one frame is being iteratively decoded, the next frame
is loaded into the decoder, and the hard decisions of the previous frame are read out from
the decoder.

• Thus each INT RAM contains two RAM blocks to store the intrinsic messages of both
current and next frames. Similarly, each DEC RAM contains two RAM blocks to store
the hard decisions of both current and previous frames.

15

7 Experiments and Results

16

8 Scope of Future Work

– LDPC codes could fulfill the high throughput demand (around 50Mbps) of 5G New
Radio(NR) networks. The implementation of the LDPC code decoder using FPGA
would reduce the fabrication time and enable a faster implementation of 5G networks
world-wide.

– Usage of FPGAs for hardware implementation enables its reconfiguration infinite
number of times and hence many companies like Microsoft Azure have their networks
setup based on FPGA powered-software reconfigured networking.

17

9 References

• Tong Zhang* and Keshab K. Parhi ECE Dept.University of Minnesota.

• Elements of information theory by CoverT.M(2ed, wiley,2006) .

• Amin Shokrollahi Digital Fountain, Inc. 39141Civic Center Drive, Fremont, CA 94538

18

https://link.springer.com/content/pdf/10.1155/S1110865703212105.pdf

10 Team

10.1 Project Mentors

• Vaibhav Thakkar

• Anshul Rai

• Afzal Rao

• Utkarsh Gupta

• Netravat Pendsey

10.2 Team Members

• Prakhar Maheshwari

• Naiza Singla

• Harsh Vardhan Arya

• Shivam Malhotra

• Aditya Gupta

• Malkurthi Sreekar

• Shubham Korde

• Prateek Gupta

• Pranab Pandey

19

	Abstract
	Acknowledgements
	Introduction
	Decoding Algorithms: Belief Propagation
	Our current approach
	Joint (3,k)-Regular LDPC Code and Decoder/Encoder Design
	Architecture

	Setup
	Software Used
	Block Diagram
	Implementation

	Experiments and Results
	Scope of Future Work
	References
	Team
	Project Mentors
	Team Members

